Lactobacillus reuteri Inhibition of Enteropathogenic Escherichia coli Adherence to Human Intestinal Epithelium
نویسندگان
چکیده
Enteropathogenic Escherichia coli (EPEC) is a major cause of diarrheal infant death in developing countries, and probiotic bacteria have been shown to provide health benefits in gastrointestinal infections. In this study, we have investigated the influence of the gut symbiont Lactobacillus reuteri on EPEC adherence to the human intestinal epithelium. Different host cell model systems including non-mucus-producing HT-29 and mucus-producing LS174T intestinal epithelial cell lines as well as human small intestinal biopsies were used. Adherence of L. reuteri to HT-29 cells was strain-specific, and the mucus-binding proteins CmbA and MUB increased binding to both HT-29 and LS174T cells. L. reuteri ATCC PTA 6475 and ATCC 53608 significantly inhibited EPEC binding to HT-29 but not LS174T cells. While pre-incubation of LS174T cells with ATCC PTA 6475 did not affect EPEC attaching/effacing (A/E) lesion formation, it increased the size of EPEC microcolonies. ATCC PTA 6475 and ATCC 53608 binding to the mucus layer resulted in decreased EPEC adherence to small intestinal biopsy epithelium. Our findings show that L. reuteri reduction of EPEC adhesion is strain-specific and has the potential to target either the epithelium or the mucus layer, providing further rationale for the selection of probiotic strains.
منابع مشابه
Adhesive ability means inhibition activities for lactobacillus against pathogens and S-layer protein plays an important role in adhesion.
Eighty-five strains of lactobacillus were isolated from the pig intestine and identified by sequencing analysis based on 16S rRNA gene, from which five lactobacillus strains with high adhesive ability were selected. The inhibition ability of the five lactobacillus strains with or without S-layer proteins against adherence of Escherichia coli K88 and Salmonella enteritidis 50335 to Caco-2 was ev...
متن کاملN-acetyllactosamine conjugated to gold nanoparticles inhibits enteropathogenic Escherichia coli colonization of the epithelium in human intestinal biopsy specimens.
We previously reported that the bundle-forming pilus-mediated localized adherence of enteropathogenic Escherichia coli to HEp-2, T84, and Caco-2 cells is inhibited by N-acetyllactosamine neoglycoconjugates. The results presented here extend this observation to the epithelium of biopsy specimens obtained from the human adult duodenum, terminal ileum, and colon.
متن کاملLactobacillus reuteri strains protect epithelial barrier integrity of IPEC‐J2 monolayers from the detrimental effect of enterotoxigenic Escherichia coli
Lactobacillus reuteri is an inhabitant of the gastrointestinal (GI) tract of mammals and birds and several strains of this species are known to be effective probiotics. The mechanisms by which L. reuteri confers its health-promoting effects are far from being fully understood, but protection of the mucosal barrier is thought to be important. Leaky gut is a state of abnormal intestinal permeabil...
متن کاملCell surface proteins play an important role in probiotic activities of Lactobacillus reuteri
Background: Eight Lactobacillus reuteri strains, previously isolated from breast-fed human infant feces, were selected to assess the potential contribution of their surface proteins in probiotic activity. These strains were treated with 5 M LiCl to remove their surface proteins, and their tolerance to simulated stomach-duodenum passage, cell surface characteristics, autoaggregation, adhesion, a...
متن کاملProbiotics inhibit enteropathogenic E. coliadherence in vitro by inducing intestinal mucin gene expression.
Probiotic agents, live microorganisms with beneficial effects for the host, may offer an alternative to conventional antimicrobials in the treatment and prevention of enteric infections. The probiotic agents Lactobacillus plantarum 299v and Lactobacillus rhamnosus GG quantitatively inhibited the adherence of an attaching and effacing pathogenic Escherichia coli to HT-29 intestinal epithelial ce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Frontiers in microbiology
دوره 7 شماره
صفحات -
تاریخ انتشار 2016